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Chapter 0

Resources, prerequisites and
notation

Online resources

Expanded lecture notes covering a lot more topics
https://wiki.cites.illinois.edu/wiki/display/MATH595STP/Math+595+STP

Java applets for vibrating membranes (and more)
http://www.falstad.com/mathphysics.html

Prerequisites
We assume familiarity with elementary Hilbert space theory: inner product,
norm, Cauchy–Schwarz, orthonormal basis (ONB), bounded and compact
operators.

Function spaces
All functions are assumed measurable. Readers unfamiliar with Sobolev
spaces need only know that:

L2 = {square integrable functions},

H1 = W1,2 = {L2-functions with 1 derivative in L2},

H1
0 = W1,2

0 = {H1-functions that equal zero on the boundary}.

These characterizations are not mathematically precise, but su�ce for our
purposes. Later we will recall the standard inner products that make these
Sobolev spaces into Hilbert spaces. For more on Sobolev space theory, and
related concepts of weak solutions and elliptic regularity, see [Evans].
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6 CHAPTER 0. RESOURCES, PREREQUISITES AND NOTATION

Laplacian
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Divergence theorem Given a bounded domain ⌦ ⇢ Rd with smooth
enough boundary, and a vector field F on the closure of the domain, one has
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Z
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where n denotes the outward unit normal vector on @⌦. In 1-dimension, the
Divergence Theorem is simply the Fundamental Theorem of Calculus:

Z

(a,b)

F0(x)dx = -F(a) + F(b)

where the negative sign indicates the leftward orientation of n at x = a.

Green’s formulas
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where the normal derivative is defined as the normal component of the gra-
dient vector:

@u

@n
= ru · n.

Proof. Apply the Divergence theorem to F = vru. Interchange u and v,
and subtract.

Integration by parts
Z

⌦

@u

@xj
v dx = -

Z
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u
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@xj
dx+

Z
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uvnj dS

where nj is the jth component of the normal vector.

Proof. Apply the Divergence Theorem to F = (0, . . . , 0, uv, 0, . . . , 0).



Chapter 1

Motivation — ODE overture

Goal

To review the role of eigenvalues and eigenvectors in solving 1st and 2nd
order systems of linear ODEs, to interpret eigenvalues as decay rates and
frequencies, and to observe formal analogies with PDEs.

Notational convention

Eigenvalues are written with multiplicity, and are listed in increasing order
(when real valued):

�1  �2  �3  · · ·

Spectrum of a real symmetric matrix

If A is a real symmetric d⇥ d matrix (e.g. A = [ a b
b c ] when d = 2) then its

spectrum is the collection of eigenvalues:

spec(A) = {�1, . . . , �d} ⇢ R

(see the figure). Recall that

Avj = �jvj

where the eigenvectors {v1, . . . , vd} can be chosen to form an ONB for Rd.
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Observe A : Rd ! Rd is diagonal with respect to the eigenbasis:
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Corresponding statements hold for complex Hermitian matrices acting on Cd.

What does the spectrum tell us about linear ODEs?
Decay rates and frequencies. . .

Example 1.1 (1st order).

dv

dt
= -Av ODE

v(0) =
X

cjvj IC

has solution
v(t) = e-Atv(0)

def
=

X
e-�jtcjvj.

Notice

�j =

�
decay rate of the solution in direction vj, if �j > 0,

growth rate of the solution in direction vj, if �j < 0.

Long-time behavior: the solution is dominated by the first mode, with

v(t) ' e-�1tc1v1 for large t
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assuming �1 < �2 (so that the second mode decays faster than the first). The
rate of collapse onto the first mode is governed by the spectral gap �2 - �1

since

v(t) = e-�1t
�
c1v1 +

dX

j=2

e-(�j-�1)tcjvj
�

= e-�1t
�
c1v1 +O(e-(�2-�1)t).

Example 1.2 (2nd order). Assume �1 > 0, so that all the eigenvalues are
positive. Then the system

d2v

dt2
= -Av ODE

v(0) =
X

cjvj IC displacement

v0(0) =
X

djvj IC velocity

has solution

v(t) = cos(
p

At)v(0) +
1

p
A

sin(
p

At)v0(0)

def
=

X
cos(

p
�jt)cjvj +

X 1p
�j

sin(
p
�jt)djvj.

Notice
p
�j = frequency of the solution in direction vj.

Example 1.3 (1st order complex). The system

i
dv

dt
= Av ODE

v(0) =
X

cjvj IC

has complex valued solution

v(t) = e-iAtv(0)
def
=

X
e-i�jtcjvj.

Here �j = frequency of the solution in direction vj.
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Looking ahead to PDEs

The negative Laplacian A = -� on a domain ⌦ ⇢ Rd with Dirichlet bound-
ary conditions is a linear operator that behaves in some ways like a self-
adjoint matrix. As we will learn in Chapter 5, its eigenvalues �j and eigen-
functions vj(x) satisfy

-�vj = �jvj in ⌦,

vj = 0 on @⌦,

and the spectrum is real and increases to infinity:

�1  �2  �3  · · · ! 1.

The eigenfunctions form an ONB for L2(⌦).
Formally substituting A = -� into ODE Examples 1.1–1.3 transforms

them into famous PDEs for the function v(x, t), and transforms the formulas
for v into “separation of variables” solutions:

• Example 1.1 — di↵usion equation vt = �v, where v(x, t) represents
chemical concentration or temperature. Solution:

v = e�tv(·, 0)
def
=

X
e-�jtcjvj(x)

where the initial value is v(·, 0) =
P

cjvj. Here �j = decay rate.

• Example 1.2 — wave equation vtt = �v, where v(x, t) represents the
vertical displacement at time t of a horizontal membrane, or the oscil-
lation of an electromagnetic signal. Solution:

v = cos(
p

-�t)v(·, 0) +
1

p
-�

sin(
p

-�t)vt(·, 0)

def
=

X
cos(

p
�jt)cjvj(x) +

X 1p
�j

sin(
p
�jt)djvj(x).

In this case
p
�j = frequency and vj = mode of vibration.

• Example 1.3 — Schrödinger equation ivt = -�v, where |v(x, t)|2 rep-
resents the probability density at time t for the location of a quantum
particle. Solution:

v = ei�tv(·, 0)
def
=

X
e-i�jtcjvj(x).

Here �j = frequency or energy level, and vj = quantum state.
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Remark. The methods that will be covered in this minicourse can handle not
only the Laplacian, but a whole family of related operators including:

A = -� Laplacian,

A = -�+ V(x) Schrödinger operator,

A = (ir+ ~V )2 magnetic Laplacian,

A = (-�)2 = �� biLaplacian.

The spectral theory of these operators helps to solve the corresponding evo-
lution equations, and explain the stability or instability of di↵erent types
of equilibrium solutions, namely: steady states, standing waves, traveling
waves, and similarity solutions.
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